
GNU Parallel Design

Page 1

Design of GNU Parallel
This document describes design decisions made in the development of
 GNU parallel and the
reasoning behind them. It will give an
 overview of why some of the code looks like it does, and help
new
 maintainers understand the code better.

One file program
GNU parallel is a Perl script in a single file. It is object
 oriented, but contrary to normal Perl scripts
each class is not in its
 own file. This is due to user experience: The goal is that in a pinch
 the user will
be able to get GNU parallel working simply by copying
 a single file: No need messing around with
environment variables like
 PERL5LIB.

Old Perl style
GNU parallel uses some old, deprecated constructs. This is due to a
 goal of being able to run on old
installations. Currently the target
 is CentOS 3.9 and Perl 5.8.0.

Exponentially back off
GNU parallel busy waits. This is because the reason why a job is
 not started may be due to load
average, and thus it will not make
 sense to wait for a job to finish. Instead the load average must be

checked again. Load average is not the only reason: --timeout has a
 similar problem.

To not burn up too up too much CPU GNU parallel sleeps
 exponentially longer and longer if nothing
happens, maxing out at 1
 second.

Shell compatibility
It is a goal to have GNU parallel work equally well in any
 shell. However, in practice GNU parallel is
being developed in bash and thus testing in other shells is limited to reported bugs.

When an incompatibility is found there is often not an easy fix:
 Fixing the problem in csh often breaks
it in bash. In these
 cases the fix is often to use a small Perl script and call that.

Job slots
The easiest way to explain what GNU parallel does is to assume that
 there are a number of job slots,
and when a slot becomes available a
 job from the queue will be run in that slot. But originally GNU
parallel did not model job slots in the code. Job slots have been
 added to make it possible to use {%}
as a replacement string.

Job slots were added to the code in 20140522, but while the job
 sequence number can be computed
in advance, the job slot can only be
 computed the moment a slot becomes available. So it has been

implemented as a stack with lazy evaluation: Draw one from an empty
 stack and the stack is
extended by one. When a job is done, push the
 available job slot back on the stack.

This implementation also means that if you use remote executions, you
 cannot assume that a given
job slot will remain on the same remote
 server. This goes double since number of job slots can be
adjusted on
 the fly (by giving --jobs a file name).

Rsync protocol version
rsync 3.1.x uses protocol 31 which is unsupported by version
 2.5.7. That means that you cannot
push a file to a remote system using rsync protocol 31, if the remote system uses 2.5.7. rsync does

not automatically downgrade to protocol 30.

GNU parallel does not require protocol 31, so if the rsync
 version is >= 3.1.0 then --protocol 30 is
added to force newer rsyncs to talk to version 2.5.7.

Compression
--compress compresses the data in the temporary files. This is a
 bit tricky because there should be
no files to clean up if GNU parallel is killed by a power outage.

GNU parallel first selects a compress program. If the user has not
 selected one, the first of these that
are in $PATH is used: lzop
 pigz pxz gzip plzip pbzip2 lzma xz lzip bzip2. They are sorted by
 speed

GNU Parallel Design

Page 2

on a 8 core machine.

Schematically the setup is as follows:

 command started by parallel | compress > tmpfile
 cattail tmpfile | uncompress | parallel

The setup is duplicated for both standard output (stdout) and standard
 error (stderr).

GNU parallel pipes output from the command run into the compress
 program which saves to a
tmpfile. GNU parallel records the pid of
 the compress program. At the same time a small perl script
(called cattail above) is started: It basically does cat followed by tail -f, but it also removes the tmpfile
as soon as the first byte
 is read, and it continously checks if the pid of the compress program
 is dead.
If the compress program is dead, cattail reads the rest of
 tmpfile and exits.

As most compress programs write out a header when they start, the
 tmpfile in practice is unlinked
after around 40 ms.

Wrapping
The command given by the user can be wrapped in multiple
 templates. Templates can be wrapped in
other templates.

--shellquote

echo <<shell double quoted input>>

--nice pri

\nice -n pri $shell -c <<shell quoted input>>

The \ is needed to avoid using the builtin nice command, which does not

support -n in tcsh. $shell -c is needed to nice composed commands

command.

--cat

(cat > {}; <<input>> {}; perl -e '$bash=shift; $csh=shift; for(@ARGV)

{unlink;rmdir;} if($bash=~s/h//) {exit$bash;} exit$csh;' "$?h"
 "$status" {});

{} is really just a tmpfile. The Perl script saves the exit value,
 unlinks the
tmpfile, and returns the exit value - no matter if the
 shell is bash (using
$?) or *csh (using $status).

--fifo

(mkfifo {};
 (<<input>> {};) & _PID=$!; cat > {}; wait $_PID; perl -e
'$bash=shift; $csh=shift; for(@ARGV)
 {unlink;rmdir;} if($bash=~s/h//)
{exit$bash;} exit$csh;' "$?h"
 "$status" {});

wait $_PID makes sure the exit value is from that PID. This makes it
incompatible with *csh. The Perl script is the same as from --cat.

--sshlogin sln

ssh sln <<shell quoted input>>

--transfer

(ssh sln mkdir -p ./workdir;rsync --protocol 30 -rlDzR -essh ./{} sln:./
workdir); <<input>>

Read about --protocol 30 in the section Rsync protocol version.

--basefile

<<todo>>

--return file

GNU Parallel Design

Page 3

<<input>>; _EXIT_status=$?; mkdir -p workdir; rsync --protocol 30
--rsync-path=cd\ ./workdir\;\ rsync -rlDzR -essh sln:./file ./workdir; exit
$_EXIT_status;

The --rsync-path=cd ... is needed because old versions of rsync
 do not
support --no-implied-dirs.

The $_EXIT_status trick is to postpone the exit value. This makes it

incompatible with *csh and should be fixed in the future. Maybe a

wrapping 'sh -c' is enough?

--cleanup

<<input>> _EXIT_status=$?; <<return>>

ssh sln \(rm\ -f\ ./workdir/{}\;\ rmdir\ ./workdir\ \>\&/dev/null\;\); exit
$_EXIT_status;

$_EXIT_status: see --return above.

--pipe

sh -c 'dd bs=1 count=1 of=tmpfile 2>/dev/null'; test ! -s "tmpfile" && rm -f "
tmpfile" && exec true; (cat tmpfile; rm tmpfile; cat -) | (<<input>>);

This small wrapper makes sure that <<input>> will never be run if
 there is
no data. sh -c is needed to hide stderr if the user's
 shell is csh (which
cannot hide stderr).

--tmux

mkfifo tmpfile.tmx;
 tmux -S <tmpfile.tms> new-session -s pPID -d 'sleep
.2' >&/dev/null;
 tmux -S <tmpfile.tms> new-window -t pPID -n <<shell
quoted input>> \(<<shell quoted input>>\)\;\ perl\ -e\ \'while\(\$t++\<3\)\{\
print\ \$ARGV\[0\],\"\\n\"\ \}\'\ \$\?h/\$status\ \>\>\ tmpfile.tmx\&echo\
<<shell double quoted input>>\;echo\ \Job\ finished\ at:\ \`date\`\;sleep\
10;
 exec perl -e '$/="/";$_=<>;$c=<>;unlink $ARGV; /(\d+)h/ and
exit($1);exit$c' tmpfile.tmx

First a FIFO is made (.tmx). It is used for communicating exit
 value. Next
a new tmux session is made. This may fail if there is
 already a session,
so the output is ignored. If all job slots finish
 at the same time, then tmux
will close the session. A temporary
 socket is made (.tms) to avoid a race
condition in tmux. It is
 cleaned up when GNU parallel finishes.

The input is used as the name of the windows in tmux. When the job

inside tmux finishes, the exit value is printed to the FIFO (.tmx).
 This
FIFO is opened by perl outside tmux, and perl then
 removes the FIFO.
Perl blocks until the first value is read from
 the FIFO, and this value is
used as exit value.

To make it compatible with csh and bash the exit value is
 printed as:
$?h/$status and this is parsed by perl.

Works in csh.

There is a bug that makes it necessary to print the exit value 3
 times.

Another bug in tmux requires the length of the tmux title and
 command to
not have certain limits. When inside these limits, 75 '\ '
 are added to the
title to force it to be outside the limits.

You can map the bad limits using:

perl -e 'sub r { int(rand(shift)).($_[0] && "\t".r(@_)) } print map {
r(@ARGV)."\n" } 1..10000' 1600 1500 90 |
 perl -ane '$F[0]+$F[1]+$F[2] <
2037 and print ' | parallel --colsep '\t' --tagstring '{1}\t{2}\t{3}' tmux -S
/tmp/p{%}-'{=3 $_="O"x$_ =}' \
 new-session -d -n '{=1 $_="O"x$_ =}' true'\
{=2 $_="O"x$_ =};echo $?;rm -f /tmp/p{%}-O*'

GNU Parallel Design

Page 4

perl -e 'sub r { int(rand(shift)).($_[0] && "\t".r(@_)) } print map {
r(@ARGV)."\n" } 1..10000' 17000 17000 90 |
 parallel --colsep '\t'
--tagstring '{1}\t{2}\t{3}' \
 tmux -S /tmp/p{%}-'{=3 $_="O"x$_ =}'
new-session -d -n '{=1 $_="O"x$_ =}' true'\ {=2 $_="O"x$_ =};echo $?;rm
/tmp/p{%}-O*'
 > value.csv 2>/dev/null

R -e 'a<-read.table("value.csv");X11();plot(a[,1],a[,2],col=a[,
3]+5,cex=0.1);Sys.sleep(1000)'

For tmux 1.8 17000 can be lowered to 2100.

The interesting areas are title 0..1000 with (title + whole command)
 in
996..1127 and 9331..9636.

The ordering of the wrapping is important:

--nice/--cat/--fifo should be done on the remote machine

--pipepart/--pipe should be done on the local machine inside --tmux

--block-size adjustment
Every time GNU parallel detects a record bigger than --block-size it increases the block size by 30%.
A small --block-size gives very poor performance; by exponentially
 increasing the block size
performance will not suffer.

Convenience options --nice --basefile --transfer --return
 --cleanup --tmux --group --compress
--cat --fifo --workdir

These are all convenience options that make it easier to do a
 task. But more importantly: They are
tested to work on corner cases,
 too. Take --nice as an example:

 nice parallel command ...

will work just fine. But when run remotely, you need to move the nice
 command so it is being run on
the server:

 parallel -S server nice command ...

And this will again work just fine, as long as you are running a
 single command. When you are
running a composed command you need nice
 to apply to the whole command, and it gets harder still:

 parallel -S server -q nice bash -c 'command1 ...; command2 | command3'

It is not impossible, but by using --nice GNU parallel will do
 the right thing for you. Similarly when
transferring files: It starts
 to get hard when the file names contain space, :, `, *, or other
 special
characters.

To run the commands in a tmux session you basically just need to
 quote the command. For simple
commands that is easy, but when commands
 contain special characters, it gets much harder to get
right.

--cat and --fifo are easy to do by hand, until you want to clean
 up the tmpfile and keep the exit code
of the command.

The real killer comes when you try to combine several of these: Doing
 that correctly for all corner
cases is next to impossible to do by
 hard.

Shell shock
The shell shock bug in bash did not affect GNU parallel, but the
 solutions did. bash first introduced
functions in variables named: BASH_FUNC_myfunc() and later changed that to
BASH_FUNC_myfunc%%. When
 transferring functions GNU parallel reads off the function and
changes
 that into a function definition, which is copied to the remote system and
 executed before the

GNU Parallel Design

Page 5

actual command is executed. Therefore GNU parallel
 needs to know how to read the function.

From version 20150122 GNU parallel tries both the ()-version and
 the %%-version, and the function
definition works on both pre- and
 post-shellshock versions of bash.

Remote Ctrl-C and standard error (stderr)
If the user presses Ctrl-C the user expects jobs to stop. This works
 out of the box if the jobs are run
locally. Unfortunately it is not so
 simple if the jobs are run remotely.

If remote jobs are run in a tty using ssh -tt, then Ctrl-C works,
 but all output to standard error (stderr)
is sent to standard output
 (stdout). This is not what the user expects.

If remote jobs are run without a tty using ssh (without -tt),
 then output to standard error (stderr) is kept
on stderr, but Ctrl-C
 does not kill remote jobs. This is not what the user expects.

So what is needed is a way to have both. It seems the reason why
 Ctrl-C does not kill the remote jobs
is because the shell does not
 propagate the hang-up signal from sshd. But when sshd dies, the

parent of the login shell becomes init (process id 1). So by
 exec'ing a Perl wrapper to monitor the
parent pid and kill the child
 if the parent pid becomes 1, then Ctrl-C works and stderr is kept on
 stderr.
The wrapper looks like this:

 $SIG{CHLD} = sub { $done = 1; };
 $pid = fork;
 unless($pid) {
 # Make own process group to be able to kill HUP it later
 setpgrp;
 exec $ENV{SHELL}, "-c", ($bashfunc."@ARGV");
 die "exec: $!\n";
 }
 do {
 # Parent is not init (ppid=1), so sshd is alive
 # Exponential sleep up to 1 sec
 $s = $s < 1 ? 0.001 + $s * 1.03 : $s;
 select(undef, undef, undef, $s);
 } until ($done || getppid == 1);
 # Kill HUP the process group if job not done
 kill(SIGHUP, -${pid}) unless $done;
 wait;
 exit ($?&127 ? 128+($?&127) : 1+$?>>8)

Transferring of variables and functions
Transferring of variables and functions given by --env is done by
 running a Perl script remotely that
calls the actual command. The Perl
 script sets $ENV{variable} to the correct value before exec'ing the
a
 shell that runs the function definition followed by the actual
 command.

env_parallel (mentioned in the man page) copies the full current
 environment into the environment
variable parallel_bash_environment. This variable is picked up by GNU parallel and used to create
the Perl script mentioned above.

Base64 encoded bzip2
csh limits words of commands to 1024 chars. This is often too little
 when GNU parallel encodes
environment variables and wraps the
 command with different templates. All of these are combined
and quoted
 into one single word, which often is longer than 1024 chars.

When the line to run is > 1000 chars, GNU parallel therefore
 encodes the line to run. The encoding
bzip2s the line to run,
 converts this to base64, splits the base64 into 1000 char blocks (so csh
 does
not fail), and prepends it with this Perl script that decodes,
 decompresses and evals the line.

 @GNU_Parallel=("use","IPC::Open3;","use","MIME::Base64");

GNU Parallel Design

Page 6

 eval "@GNU_Parallel";

 $SIG{CHLD}="IGNORE";
 # Search for bzip2. Not found => use default path
 my $zip = (grep { -x $_ } "/usr/local/bin/bzip2")[0] || "bzip2";
 # $in = stdin on $zip, $out = stdout from $zip
 my($in, $out,$eval);
 open3($in,$out,">&STDERR",$zip,"-dc");
 if(my $perlpid = fork) {
 close $in;
 $eval = join "", <$out>;
 close $out;
 } else {
 close $out;
 # Pipe decoded base64 into 'bzip2 -dc'
 print $in (decode_base64(join"",@ARGV));
 close $in;
 exit;
 }
 wait;
 eval $eval;

Perl and bzip2 must be installed on the remote system, but a small
 test showed that bzip2 is installed
by default on all platforms
 that runs GNU parallel, so this is not a big problem.

The added bonus of this is that much bigger environments can now be
 transferred as they will be
below bash's limit of 131072 chars.

Which shell to use
Different shells behave differently. A command that works in tcsh
 may not work in bash. It is
therefore important that the correct
 shell is used when GNU parallel executes commands.

GNU parallel tries hard to use the right shell. If GNU parallel
 is called from tcsh it will use tcsh. If it
is called from bash it will use bash. It does this by looking at the
 (grand*)parent process: If the
(grand*)parent process is a shell, use
 this shell; otherwise look at the parent of this (grand*)parent. If

none of the (grand*)parents are shells, then $SHELL is used.

This will do the right thing if called from:

an interactive shell

a shell script

a Perl script in `` or using system if called as a single string.

While these cover most cases, there are situations where it will fail:

 #!/usr/bin/perl

 system("parallel",'setenv a {}; echo $a',":::",2);

Here it depends on which shell is used to call the Perl script. If the
 Perl script is called from tcsh it will
work just fine, but if it
 is called from bash it will fail, because the command setenv is
 not known to
bash.

Quoting
Quoting is kept simple: Use \ for all special chars and ' for
 newline. Whether a char is special depends
on the shell and the
 context. Luckily quoting a bit too many does not break things.

GNU Parallel Design

Page 7

It is fast, but had the distinct disadvantage that if a string needs
 to be quoted multiple times, the \'s
double every time - increasing
 the string length exponentially.

--pipepart vs. --pipe
While --pipe and --pipepart look much the same to the user, they are
 implemented very differently.

With --pipe GNU parallel reads the blocks from standard input
 (stdin), which is then given to the
command on standard input (stdin);
 so every block is being processed by GNU parallel itself. This is

the reason why --pipe maxes out at around 100 MB/sec.

--pipepart, on the other hand, first identifies at which byte
 positions blocks start and how long they
are. It does that by seeking
 into the file by the size of a block and then reading until it meets
 end of a
block. The seeking explains why GNU parallel does not know
 the line number and why -L/-l and -N
do not work.

With a reasonable block and file size this seeking is often more than
 1000 faster than reading the full
file. The byte positions are then
 given to a small script that reads from position X to Y and sends

output to standard output (stdout). This small script is prepended to
 the command and the full
command is executed just as if GNU parallel had been in its normal mode. The script looks like this:

 < file perl -e 'while(@ARGV) {
 sysseek(STDIN,shift,0) || die;
 $left = shift;
 while($read = sysread(STDIN,$buf, ($left > 32768 ? 32768 : $left))){
 $left -= $read; syswrite(STDOUT,$buf);
 }
 }' startbyte length_in_bytes

It delivers 1 GB/s per core.

Instead of the script dd was tried, but many versions of dd do
 not support reading from one byte to
another and might cause partial
 data. See this for a surprising example:

 yes | dd bs=1024k count=10 | wc

--jobs and --onall
When running the same commands on many servers what should --jobs
 signify? Is it the number of
servers to run on in parallel? Is it the
 number of jobs run in parallel on each server?

GNU parallel lets --jobs represent the number of servers to run
 on in parallel. This is to make it
possible to run a sequence of
 commands (that cannot be parallelized) on each server, but run the

same sequence on multiple servers.

Buffering on disk
GNU parallel buffers on disk in $TMPDIR using files, that are
 removed as soon as they are created,
but which are kept open. So even
 if GNU parallel is killed by a power outage, there will be no files
 to
clean up afterwards. Another advantage is that the file system is
 aware that these files will be lost in
case of a crash, so it does
 not need to sync them to disk.

It gives the odd situation that a disk can be fully used, but there
 are no visible files on it.

Disk full
GNU parallel buffers on disk. If the disk is full data may be
 lost. To check if the disk is full GNU
parallel writes a 8193 byte
 file when a job finishes. If this file is written successfully, it is
 removed
immediately. If it is not written successfully, the disk is
 full. The size 8193 was chosen because 8192
gave wrong result on some
 file systems, whereas 8193 did the correct thing on all tested
 filesystems.

GNU Parallel Design

Page 8

Perl replacement strings, {= =}, and --rpl
The shorthands for replacement strings make a command look more
 cryptic. Different users will need
different replacement
 strings. Instead of inventing more shorthands you get more more
 flexible
replacement strings if they can be programmed by the user.

The language Perl was chosen because GNU parallel is written in
 Perl and it was easy and
reasonably fast to run the code given by the
 user.

If a user needs the same programmed replacement string again and
 again, the user may want to
make his own shorthand for it. This is
 what --rpl is for. It works so well, that even GNU parallel's
 own
shorthands are implemented using --rpl.

In Perl code the bigrams {= and =} rarely exist. They look like a
 matching pair and can be entered on
all keyboards. This made them good
 candidates for enclosing the Perl expression in the replacement

strings. Another candidate ,, and ,, was rejected because they do not
 look like a matching pair.
--parens was made, so that the users can
 still use ,, and ,, if they like: --parens ,,,,

Internally, however, the {= and =} are replaced by \257< and
 \257>. This is to make it simple to make
regular expressions: \257 is
 disallowed on the command line, so when that is matched in a regular

expression, it is known that this is a replacement string.

Test suite
GNU parallel uses its own testing framework. This is mostly due to
 historical reasons. It deals
reasonably well with tests that are
 dependent on how long a given test runs (e.g. more than 10 secs is
a
 pass, but less is a fail). It parallelizes most tests, but it is easy
 to force a test to run as the single test
(which may be important for
 timing issues). It deals reasonably well with tests that fail
 intermittently. It
detects which tests failed and pushes these to the
 top, so when running the test suite again, the tests
that failed most
 recently are run first.

If GNU parallel should adopt a real testing framework then those
 elements would be important.

Since many tests are dependent on which hardware it is running on,
 these tests break when run on a
different hardware than what the test
 was written for.

When most bugs are fixed a test is added, so this bug will not
 reappear. It is, however, sometimes
hard to create the environment in
 which the bug shows up - especially if the bug only shows up

sometimes. One of the harder problems was to make a machine start
 swapping without forcing it to its
knees.

Median run time
Using a percentage for --timeout causes GNU parallel to compute
 the median run time of a job. The
median is a better indicator of the
 expected run time than average, because there will often be outliers
taking way longer than the normal run time.

To avoid keeping all run times in memory, an implementation of
 remedian was made (Rousseeuw et
al).

Error messages and warnings
Error messages like: ERROR, Not found, and 42 are not very
 helpful. GNU parallel strives to inform
the user:

What went wrong?

Why did it go wrong?

What can be done about it?

Unfortunately it is not always possible to predict the root cause of the error.

GNU Parallel Design

Page 9

Computation of load
Contrary to the obvious --load does not use load average. This is
 due to load average rising too
slowly. Instead it uses ps to list
 the number of jobs in running or blocked state (state D, O or R). This

gives an instant load.

As remote calculation of load can be slow, a process is spawned to run ps and put the result in a file,
which is then used next time.

Ideas for new design
Multiple processes working together

Open3 is slow. Printing is slow. It would be good if they did not tie
 up ressources, but were run in
separate threads.

Transferring of variables and functions from zsh
Transferring Bash functions to remote zsh works.
 Can parallel_bash_environment be used to import
zsh functions?

--rrs on remote using a perl wrapper
... | perl -pe '$/=$recend$recstart;BEGIN{ if(substr($_) eq $recstart) substr($_)="" } eof and substr($_)
eq $recend) substr($_)=""

It ought to be possible to write a filter that removed rec sep on the
 fly instead of inside GNU parallel.
This could then use more cpus.

Will that require 2x record size memory?

Will that require 2x block size memory?

Historical decisions
--tollef

You can read about the history of GNU parallel on https://www.gnu.org/software/parallel/history.html

--tollef was included to make GNU parallel switch compatible
 with the parallel from moreutils (which
is made by Tollef Fog
 Heen). This was done so that users of that parallel easily could port
 their use to
GNU parallel: Simply set PARALLEL="--tollef" and
 that would be it.

But several distributions chose to make --tollef global (by putting it
 into /etc/parallel/config), and that
caused much confusion when people
 tried out the examples from GNU parallel's man page and
these did
 not work. The users became frustrated because the distribution did
 not make it clear to
them that it has made --tollef global.

So to lessen the frustration and the resulting support, --tollef
 was obsoleted 20130222 and removed
one year later.

Transferring of variables and functions
Until 20150122 variables and functions were transferred by looking at
 $SHELL to see whether the
shell was a *csh shell. If so the
 variables would be set using setenv. Otherwise they would be set

using =. The caused the content of the variable to be repeated:

echo $SHELL | grep "/t\{0,1\}csh" > /dev/null && setenv VAR foo ||
 export VAR=foo

